Parameter identifiability analysis is an analysis that describes whether the parameters of a dynamical system can be identified from data or whether they are redundant. There are two forms of identifiability analysis: structural and practical. Structural identifiability analysis relates changes in the solution of the ODE directly to other parameters, showcasing that it is impossible to distinguish between parameter A being higher and parameter B being lower, or the vice versa situation, given only data about the solution because of how the two interact. This could be done directly on the symbolic form of the equation as part of ModelingToolkit.jl. Meanwhile, practical identifiability analysis looks as to whether the parameters are non-identifiable in a practical sense, for example if two parameters are numerically indistinguishable (given possibly noisy data). In this case, numerical techniques being built in DiffEqSensitivity.jl, such as a nonlinear likelihood profiler or an information sensitivity measure can be used to showcase whether a parameter has a unique enough effect to be determined.

**Recommended Skills**: A basic background in differential equations and the ability to use numerical ODE solver libraries. Background in the numerical analysis of differential equation solvers is not required.

**Expected Results**: Efficient and high-quality implementations of parameter identifiability methods.

**Mentors**: Chris Rackauckas

Model order reduction is a technique for automatically finding a small model which approximates the large model but is computationally much cheaper. We plan to use the infrastructure built by ModelingToolkit.jl to implement a litany of methods and find out the best way to accelerate differential equation solves.

**Recommended Skills**: A basic background in differential equations and the ability to use numerical ODE solver libraries. Background in the numerical analysis of differential equation solvers is not required.

**Expected Results**: Efficient and high-quality implementations of model order reduction methods.

**Mentors**: Chris Rackauckas

Numerically solving a differential equation can be difficult, and thus it can be helpful for users to simplify their model before handing it to the solver. Alas this takes time... so let's automate it! ModelingToolkit.jl is a project for automating the model transformation process. Various parts of the library are still open, such as:

Support for DAEs, DDEs, and SDEs

Pantelides algorithm for DAE index reduction

Lamperti transforms

Automatic construction of adjoint solutions

Tearing in nonlinear solvers

Solving distributed delay equations

**Recommended Skills**: A basic background in differential equations and the ability to use numerical ODE solver libraries. Background in the numerical analysis of differential equation solvers is not required.

**Expected Results**: Efficient and high-quality implementations of model transformation methods.

**Mentors**: Chris Rackauckas and Yingbo Ma

Website powered by Franklin.jl and the Julia programming language.